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ALstracL The surface dynamics of conserved growth in a resfricted solid-on-solid (Rsos) model 
is described. A randomly deposited pafticle is allowed to migrnre to the nearest site satisfying the 
RSOS condition. The surface width, the correlation function and the shuchlre factor measurements 
are consistent with the Lai and Das Sarma and Villain equation ahtar = -vv*h+hVZ(Vh)2tv. 
The physical origin of the nonlinearity is also discussed. 

Over recent years, there have been many studies of the surface structure of various growt!! 
models [I]. Among them, the class of models known as solid-on-solid (SOS) models has been 
extensively studied as simple models of both equilibrium and non-equilibrium properties 
of surfaces. The characteristic feature of the models within this class is the restriction of 
fluctuations to exclude all configurations with overhangs and lattice vacancies. An important 
variation among the SOS models is the restricted SOS (RsOS) model, in which the differences 
between neighbouring heights of the local columns lShl are usually restricted to zero or 
unity in magnitude. Even with this restriction, the equilibrium RSOS model still exhibits a 
roughening transition at three dimensions [Z]. Also the yon-equilibrium growth in a RSOS 
model [3] is well described by the Kardar-Parisi-Bang (m) equation [4]. In fact the RSOS 
condition suppresses the short wavelength fluctuations and leads to rapid convergence to the 
asymptotic behaviour. The relation between the RSOS growth models and KPZ equation has 
been clarified recently by studying the mapping [SI between the growth model and a directed 
polymer in random potentials [6]. Recently much effort has been given to a 'conserved 
growth model' which conserves complete particles after they have been deposited [7-131. 
There are neither overhangs nor vacancies and the surface currents are conserved in the 
conserved growth model which is possibly related to the real molecular beam epitaxial 
(MBE) growth. The tiltdependent current analysis [ 141 shows that some discrete growth 
models belong to the Edwards and Wilkinson (Ew) [IS] universality class 1161. So far, there 
is no linn understanding of the relation between discrete growth models and a nonlinear 
conserved particle equation [13]. Here we will discuss conserved growth in a RSOS model 
which follows the nonlinear equation. 

The interesting quantity of the growth process is the self-affine surface structure. Most 
studies have concentrated on studying the surface shucture, especially on determining the 
exponents governing surface fluctuations. The surface width W is defined as the standard 
deviation or the root-mean-square fluctuation of the surface height. The dynamic scaling 
hypothesis is that in a finite system of lateral size L, the width W starting from a flat 

0305-4470/94/150533Cl9.50 @ 1994 1OP Publishing Ltd L533 



U34 Letter to the Editor 

substrate scales as 1171 

W ( t )  - LUf( t /L' )  
--to t < L' 
- L e  t >>L' 

where the scaling function f ( x )  is x @  for x << 1 and is constant for x >> I. The time t 
is the average height of the surface. The exponents J3 and z are connected by the relation 
2.p =O1.  

Our model is very similar to the simple R S ~ S  growth model [3] except for the constraint 
of conserved particle growth. The growth algorithm is as follows. 

(i) A site I is randomly selected on a (d - l>dimensional lattice. 
(i) If the RSOS condition (RSOSC) on neighbouring heights 16hl = 0.1,. . . , N is 

obeyed at I after a particle is deposited, then growth is permitted by increasing the height 
h(x)  -+ h(x) + I. 

(iii) If the RSOSC is not obeyed at I, we scan the neighbouring sites of the (d - 1)- 
dimensional lattice and growth of the height by one unit is permitted at the site nearest to x 
where the RSOSC is satisfied. To be more specific, if the RSoSC is not obeyed at I, a site is 
randomly selected from among the nearest neighbours (NNs) of I which satisfy the RSOSC, 
allowing growth by increasing h -+ h + 1 at that NN site. If thefe is no NN satisfying the 
RSOSC, then a site is randomly selected from among the next NNS (NNNs) of x satisfying 
the RSOSC to allow a growth. If no NNN satisfies RSOSC, then among the next NNNS etc. 

Without step (ii), our model is exactly the same as the simple RSOS growth model 131. 
In the RSOS growth model a particle is dropped at a randomly selected site. If the RSOSC 
is not satisfied, then the dropped particle is rejected. This rejection rate is around 0.7 in 
d = 1 + 1. However, in our conserved growth model with step (iii) a dropped particle at a 
randomly selected site wanders around the surface to find the nearest site which satisfies the 
RSOSC. So the rejection rate is clearly zcm and our model faithfully produces a RSOS model 
with the constraint of conserved particle growth. To find a site satisfying the RSOSC, the 
dropped particle can migrate both upwards and downwards from the surface. The simple 
RSOS growth model [3] does not conserve the total deposited particles and produces a KPZ 
nonlinearity [4]. In OUT conserved model, since the deposited particle is allowed to migrate 
both upwards and downwards, there is no surface diffusion term in the EW model [15]. 
Instead, there may be a conserved nonlinearity due to the RSOS restriction. 

Here, we find that ow model is very likely to be a discrete SOS model described by the 
nonlinear MBE growth equation of Lai and Das Sarma [7] and Villain [lo]. 

- = -uV4h(x, t )  + AVZ(Vh)' + V ( X ,  t )  ah(% t )  
at 

where h(x, t )  is the height of  the film and q is a non-conserved Gaussian random noise 
satisfying 

( q ( x , t ) q ( x ' ,  t')) = 2 D S ( X  - x')IJ(t - t').  (3) 

This equation can be solved by a one-loop renormalization group calculation [7] giving 
01 = ( 5 - d ) / 3  and z = ( 7 + 4 / 3 ,  i.e. J3 = (5 -4 / (7+d) .  In d =  1 + 1, J3 = 1/3 is the 
same as the value of the KPZ exponenf but z = 3 is different from zm = 3/2. Sun etal [ 181 
studied a similar equation with conserved noise and found dBerent values: fi  = 1/11 and 
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z = 11/3 in d = 1 + 1 [18]. Even though there have been some attempts to understand the 
continuum equation, there is no clear physical explanation for the nonlinear term VZ(Vh)2. 
Since the values of the exponents, the structnre factor and the correlation function measured 
in our model are consistent with equation (2). we claim that the conserved growth model 
follows this nonlinear equation. We also discuss the relation between the non-conserved 
RSOS growth model [3] and our model. 

Our simulations are performed in d = 1 + 1 from a flat substrate with periodic boundary 
conditions in d - 1 dimensions. Typically for the restriction parameter N = 1, but the 
results, which we have checked by further simulations, are independent of N. The time t 
corresponds to the number of Monte Carlo steps (number of layers). As usual, we monitor 
the surface width as a function of time. which increases as t b  for early times and eventually 
saturates when the parallel correlation tilz is of the order of the lateral system sue L. 

To determine the growth exponent p, we measure W ( t )  as a function of time for a system 
size L = 10000 (d = 1 + 1). The minimum value N = 1 was used for the restriction 
parameter. Through the relation W ( t )  - t p  for early times f << Lz, and averaging over 60 
independent mns, we obtain (figure 1) 

,S = 0.32 * 0.01 d = 1 + 1. (4) 

The result above is slightly smaller than the expected theoretical value 113 f” the 
equation (2). However, there is a small upwards trend of the slope as a function of time in 
figure 1 so the slope may approach 1/3. 

2 3 4 5 6 7 8 9 

In t 

Figure 1. Surface Widlh W as a function of time in a log-log plot (L = lOO00). 
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For the roughness exponent 01 that describes the saturation of the interface fluctuation, 
we use the relation W ( t )  N Le for the system size L in the steady-state regime t >> L'. 
We have used system sizes of L = 64.90, 128, 180,256 in d = 1 + 1. Since the dynamic 
critical exponent z is around three, the time required to reach the saturated regime is larger 
than L3. From the log-log plot of W ( L )  and size L, we get 

(Y = 0.95 rt 0.04 d = 1 + 1 (5 )  

as shown in figure 2 where as a comparison, the data for the simple RSOS growth model 
(or = lj2) are also given. Through the relation z = we get z N 0.95/0.32 N 2.97. 
These exponents of our model are in very good agreement with p = 113, (Y = 1 and 
z = 3 obtained analytically from equation (2) in 171. They also satisfy the scaling relations 
[8,18,71 
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z - % - d + l  = O  (6) 

z+or=4 (7) 

very well. The scaling relation of equation (6) is due to the conserved pa.rticle condition 
that there is no evaporation of the dropped particles. 
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Figure 2. Sahuated surface width W as a function of L in a log-log plot. For comparison the 
saturated W of the simple RSOS growth model 131 is shown as well. 
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Since the above agreement between the values of the exponents may not guarantee t b t  
the model belongs to the same universality class as the continuum equation (2). we calculate 
the sbllcture factor 

S ( L ,  k ,  t )  = (h(k .  t )h( -k ,  I)) 

for a system of lateral size L where h(k ,  2)  is the Fourier @ansfom of the height h ( x ,  t ) .  
As expected from equation (I), figure 3 shows that S ( L ,  k ,  t -+ CO) follows l/kd for small 
k with S = 2.99 rt 0.05 in d = 1 + 1 being consistent with S = z = 2ci + d - 1 = 3 without 
showing any L dependence. 

10,  I I , I 
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Figure 3. S m c h m  factor against k at a saturated regime for L = &?, 128 and 256. The negative 
slope 6 = 2.99 f 0.05 for small k is consistent with 6 = 3 expected f” equation (2). 

Another interesting quantity is the correlation function G(r, 2)  = ((h(x+r,  t ) -h (x ,  I))’). 
From the numerical measurement of the correlation function as shown in figure 4, the scaling 
plot of G(r, t ) / rk  against r / t ’ l2  with 01 = 1 and z = 3 shows very good data collapse. All 
these results involving the surface width, structure factor and correlation function support 
our assertion that our model belongs to the same universality class as equation (2). 

The Das Sarma and 
Tamborenea (DT) model [9] and the Wolf and Villain (WV) model [8] allow a deposited 
particle to migrate to maximum bond sites. In realistic MBE growth, Arrhenius hopping 
may effectively induce a deposited particle to settle into maximally bonded sites. From the 
measurement of (Y and p ,  these models were believed to follow Mullins’ equation (h = 0 in 
equation (2)) [19]. However, the close relation between these models and Mullins’ equation 
has been questioned recently [14,16. U)]. Specifically, WV model allows only downward 
jumps so the surface current flows to the lower height sites probably producing the non-zero 

Some other conserved growth models 18,9,13] also exist. 
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Figure 4. The daa muapse of the scaled height-height correlation fonctions G(r, t )  for 
f = 50.10, 150.. . . , and 450 with L = 3 and 01 = 1. ?he scaling function g ( x )  of G(r, f )  
satisfies x-2 for z > 1 quite well. 
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diffusion that is characteristic of the Ew model, which was supported by the tilt-dependent 
current measurement of the model 1141. Since a deposited particle is allowed to migrate 
equally in both up and down directions in our model, we do not expect any m-type diffusion. 
So far, there is no clear identification of the microscopic process that generate the nonlinear 
term. We can rewrite equation (2) as ah/& = V . V[-uV2h + A(Vh)*] + q where the 
surface current is V[uV2h - A(Vh)2]. Since the particle deposited on a slope migrates to 
a flat area, a surface current is generated from the higher-sloped region to the lower-sloped 
region. So, we can argue roughly that our model has a positive A in equation (2) [13]. 
This is the reason why conserved growth with the RSOSC produces a nonlinear effect. It is 
interesting that the non-conserved RSOS growth model 131 generates the KPZ nonlinearity and 
the conserved growth model with RSOSC (our model) produces the conserved nonlinearity 
in equation (2). The sign of X is irrelevant, so it might be interesting to cons!mct a model 
with a negative A which belongs to the same universality class. There is a different model 
[ 111 having the same value for the exponent p where Arrhcnius hopping is allowed on the 
SOS model. Since a kink site is more favourable than a singlebond site in the model, it 
may have a negative A 1131. The different signs for A between our model and [Ill is due 
to the different physical origins [21]. Behaviour similar to that in the Kpz equation is also 
shown in the finite-temperature RSOS growth model where the Kpz nonlinearity depends on 
a temperature-like parameter [XI.  In fact our model has infinite horizontal diffusion. In 
realistic growth, the deposited particle may migrate quite a long distance at high temperature 
to prevent a high step. If the temperature is high enough for the Schwoehel effect to be 
negligible but low enough to prevent the high steps from forming, the distribution of step 
height in real crystal growth may satisfy the RsOSC. One can consider step flow on a vicinal 
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surface experimentally. Since 01 = 1/2 in EW model, 01 = 1 in our model and a = 3/2 in 
Mullins' equation, we may classify the MBE growth by measuring the correlation function 
of the step edges on a vicinal surface. 

In summary, we have conshucted simple conserved growth in a RSOS model which can 
be well described by a nonlinear conserved equation. Numerical study of the models shows 
that the structure factor, the correlation function and the measured values of the exponents ' 

are in good agreement with the theoretical results of the continuum equations. Conserved 
growth with the RSOSC effectively produces the conserved nonlinear term in equation (2). 
The relation between realistic MBE growth and OUT model remains to be understood. 
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